Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,3(R):4,6(R)-Di-O-benzylidene-Dmannitol

Yingxin Xiao, ${ }^{\text {a }}$ Ronald J. Voll, ${ }^{\text {b }}$ Damon R. Billodeaux, ${ }^{\text {c }}$ Frank R. Fronczek* ${ }^{\text {c* }}$ and Ezzat S. Younathan ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA, ${ }^{\mathbf{b}}$ Department of Radiology, Emory School of Medicine, Atlanta, GA 30322, USA, and ${ }^{\text {c }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
Correspondence e-mail: fronz@chxray1.chem.Isu.edu

Received 15 September 1999
Accepted 31 January 2000
The title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$, has crystallographic twofold symmetry. The central six-C-atom chain has an extended conformation similar to that of D-mannitol, with two independent $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles of 165.69 (14) and $177.60(12)^{\circ}$. The 1,3 -dioxane ring has a chair conformation. All chiral centers have the R configuration.

Comment

The use of carbohydrates as inexpensive starting materials and building blocks is of great interest (Bols, 1996). For example, D-mannitol, which has C_{2} symmetry, offers unique synthetic approaches to chiral auxiliaries (Defoin et al., 1991; Masaki et al., 1992) and chiral drugs (Poitout et al., 1994). Benzylidene acetal is a commonly used temporary protective group for Dmannitol because of its stability to most reaction conditions and high-yielding deprotection step (Greene \& Wuts, 1991). The title compound, (I), is a benzylidene-protected mannitol. The elucidation of its structure was carried out to study the effect of the two six-membered 1,3-dioxane rings on the conformation of the central six-C-atom mannitol core.

(I)

Fig. 1 shows the atomic numbering scheme and conformation of (I). The molecule lies on a crystallographic twofold axis. The chiral centers C2, C3 and C7 all have the R configuration. The six-membered benzylidene acetal 1,3 -dioxane ring adopts a chair conformation, with endocyclic torsion angles in the range $44.54(14)-68.55(13)^{\circ}$. All substituents are in equatorial positions. The torsion angles formed by the six
central C atoms of (I) are comparable with those in dLmannitol (Kanters et al., 1977), D-mannitol (Berman et al., 1968; Kim et al., 1968) and hexaacetal-d-mannitol (Stein et al., 1992), despite the presence of the 1,3-dioxane ring. While in all these cases the conformation is anti-anti-anti, deviations from 180° vary by up to about 20°. In (I), there are only two such independent torsion angles, as a result of the molecular symmetry. These are $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$ [165.69 (14) ${ }^{\circ}$; symmetry code: (i) $1-x, y,-z]$ and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ [177.60 (12) ${ }^{\circ}$]. None of the other mannitols retain their C_{2} symmetry in the crystal, and thus have three independent torsion angles. In dL-mannitol (Kanters et al., 1977) they are -175.9 (4), -176.5 (4) and $174.8(4)^{\circ}$, in β-d-mannitol (Berman et al., 1968) they are -175.3 (6), 175.8 (6) and -179.8 (6) ${ }^{\circ}$, in K-d-mannitol (Kim et al., 1968) they are -174.8 (3), 175.8 (3) and -176.5 (3) ${ }^{\circ}$, and in hexaacetal-dmannitol (Stein et al., 1992) they are -175.3 (5), 159.8 (5) and -173.2 (5) ${ }^{\circ}$. The main difference in conformation between (I) and the cited acyclic mannitols is the torsion angle involving vicinal O atoms, $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2\left[-169.52(11)^{\circ}\right]$. Cyclization forces the O atoms to be antiperiplanar, while they are gauche [torsion angle magnitudes 58.0 (3)-65.6(7) ${ }^{\circ}$] in the acyclic mannitols.

Figure 1
The molecular structure of (I) showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

The phenyl ring in (I) is planar, with a maximum deviation of 0.006 (2) \AA for C11. Molecules form weakly hydrogenbonded chains in the symmetry direction, via pairs of $\mathrm{O} 2-$ $\mathrm{H} \cdots \mathrm{O} 1^{\text {ii }}$ interactions [symmetry code: (ii) $x, y-1, z$]. Both OH groups of each molecule donate to 1,3 -dioxane O atoms of the same translation-related adjacent molecule. The $\mathrm{O} \cdots \mathrm{O}$ distance in this interaction is 3.183 (2) \AA and the angle about the H atom is 158 (3) ${ }^{\circ}$.

Experimental

Compound (I) was prepared by acetalization of D-mannitol with benzaldehyde (Baggett \& Stribblehill, 1977). A crystal suitable for data collection was obtained by slow evaporation of an ethanol solution at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=358.4$
Monoclinic, C2
$a=17.472$ (4) \AA
$b=4.9237$ (10) A
$c=9.956(2) \AA$
$\beta=94.08(3)^{\circ}$
$V=854.4(3) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.668, T_{\text {max }}=0.934$
4158 measured reflections
1703 independent reflections
1669 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.093$
$S=0.933$
1703 reflections
123 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& D_{x}=1.391 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=11.4-44.7^{\circ} \\
& \mu=0.851 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Lath, colorless } \\
& 0.53 \times 0.20 \times 0.08 \mathrm{~mm} \\
& \\
& \\
& R_{\text {int }}=0.027 \\
& \theta_{\max }=75^{\circ} \\
& h=-21 \rightarrow 21 \\
& k=-6 \rightarrow 5 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 2.1 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0677 P)^{2}\right. \\
& +0.1745 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.002 \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0112 \text { (14) } \\
& \text { Absolute structure: Flack (1983) } \\
& \text { Flack parameter }=-0.10(17)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.4179(15)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.4076(14)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.4328(18)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.4370(15)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.4273(17)$	$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.512(2)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1$	$108.34(10)$	$\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 3$	$111.17(9)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$58.34(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$165.69(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$-169.52(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}$	$177.60(12)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-47.14(16)$	$\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 1$	$68.30(12)$
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$-55.36(13)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 3$	$-68.55(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	$44.54(14)$		

[^0]The absolute configuration of (I) was determined by refinement of the Flack (1983) parameter, based on 713 Friedel pairs, and is in accord with the known absolute configuration. The hydroxyl-H atom was refined isotropically. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ bond distances of 0.93 (phenyl) and $0.97 \AA\left(s p^{3}\right)$, and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached C atom, and thereafter treated as riding.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: $C A D-4 E X P R E S S$; data reduction: XCAD4 (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by grant No. LEQSF(1996-97)-ESH-TR-10, administered by the Louisiana Board of Regents. This work was supported by a grant from the Department of Biological Sciences at Louisiana State University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1113). Services for accessing these data are described at the back of the journal.

References

Baggett, N. \& Stribblehill, P. (1977). J. Chem. Soc. Perkin Trans. 1, pp. $1123-$ 1129.

Berman, H. M., Jeffrey, G. A. \& Rosenstein, R. D. (1968). Acta Cryst. B24, 442-449.
Bols, M. (1996). Carbohydrate Building Blocks, pp. 1-18. New York: John Wiley \& Sons.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Defoin, A., Brouillard-Poichet, A. \& Streith, J. (1991). Helv. Chim. Acta, 74, 103-109.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Greene, T. W. \& Wuts, P. G. M. (1991). Protective Groups in Organic Synthesis, 2nd ed., pp. 128-132. New York: John Wiley \& Sons.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
Kanters, J. A., Roelofsen, G., \& Smits, D. (1977). Acta Cryst. B33, 3635-3640.
Kim, H. S., Jeffrey, G. A. \& Rosenstein, R. D. (1968). Acta Cryst. B24, 14491455.

Masaki, Y., Oda, H., Kazuta, K., Usui, A., Itoh, A. \& Xu, F. (1992). Tetrahedron Lett. 33, 5089-5092.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Poitout, L., Le Merrer, Y. \& Depezay, J.-C. (1994). Tetrahedron Lett. 35, 32933296.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stein, Z., Green, D. \& Goldberg, I. (1992). Acta Cryst. C48, 1141-1143.

[^0]: Symmetry code: (i) $1-x, y,-z$.

