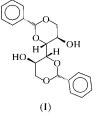
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

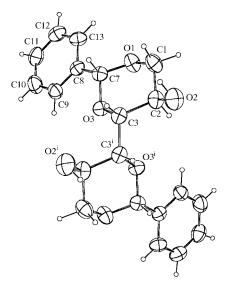
1,3(R):4,6(R)-Di-O-benzylidene-Dmannitol

Yingxin Xiao,^a Ronald J. Voll,^b Damon R. Billodeaux,^c Frank R. Fronczek^{c*} and Ezzat S. Younathan^a

^aDepartment of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA, ^bDepartment of Radiology, Emory School of Medicine, Atlanta, GA 30322, USA, and ^cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA


Correspondence e-mail: fronz@chxray1.chem.lsu.edu

Received 15 September 1999 Accepted 31 January 2000


The title compound, $C_{20}H_{22}O_6$, has crystallographic twofold symmetry. The central six-C-atom chain has an extended conformation similar to that of D-mannitol, with two independent C-C-C-C torsion angles of 165.69 (14) and 177.60 (12)°. The 1,3-dioxane ring has a chair conformation. All chiral centers have the *R* configuration.

Comment

The use of carbohydrates as inexpensive starting materials and building blocks is of great interest (Bols, 1996). For example, D-mannitol, which has C_2 symmetry, offers unique synthetic approaches to chiral auxiliaries (Defoin *et al.*, 1991; Masaki *et al.*, 1992) and chiral drugs (Poitout *et al.*, 1994). Benzylidene acetal is a commonly used temporary protective group for Dmannitol because of its stability to most reaction conditions and high-yielding deprotection step (Greene & Wuts, 1991). The title compound, (I), is a benzylidene-protected mannitol. The elucidation of its structure was carried out to study the effect of the two six-membered 1,3-dioxane rings on the conformation of the central six-C-atom mannitol core.

central C atoms of (I) are comparable with those in DLmannitol (Kanters et al., 1977), D-mannitol (Berman et al., 1968; Kim et al., 1968) and hexaacetal-D-mannitol (Stein et al., 1992), despite the presence of the 1,3-dioxane ring. While in all these cases the conformation is anti-anti-anti, deviations from 180° vary by up to about 20° . In (I), there are only two such independent torsion angles, as a result of the molecular symmetry. These are $C1-C2-C3-C3^{i}$ [165.69 (14)°; symmetry code: (i) 1 - x, y, -z] and C2-C3-C3ⁱ-C2ⁱ $[177.60 (12)^{\circ}]$. None of the other mannitols retain their C_2 symmetry in the crystal, and thus have three independent torsion angles. In DL-mannitol (Kanters et al., 1977) they are -175.9 (4), -176.5 (4) and 174.8 (4)°, in β -D-mannitol (Berman *et al.*, 1968) they are -175.3 (6), 175.8 (6) and $-179.8~(6)^{\circ}$, in K-D-mannitol (Kim *et al.*, 1968) they are -174.8 (3), 175.8 (3) and -176.5 (3)°, and in hexaacetal-Dmannitol (Stein et al., 1992) they are -175.3 (5), 159.8 (5) and -173.2 (5)°. The main difference in conformation between (I) and the cited acyclic mannitols is the torsion angle involving vicinal O atoms, O1-C1-C2-O2 [-169.52 (11)°]. Cyclization forces the O atoms to be antiperiplanar, while they are gauche [torsion angle magnitudes 58.0 (3)–65.6 (7)°] in the acyclic mannitols.

Figure 1

The molecular structure of (I) showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Fig. 1 shows the atomic numbering scheme and conformation of (I). The molecule lies on a crystallographic twofold axis. The chiral centers C2, C3 and C7 all have the *R* configuration. The six-membered benzylidene acetal 1,3-dioxane ring adopts a chair conformation, with endocyclic torsion angles in the range 44.54 (14)–68.55 (13)°. All substituents are in equatorial positions. The torsion angles formed by the six The phenyl ring in (I) is planar, with a maximum deviation of 0.006 (2) Å for C11. Molecules form weakly hydrogenbonded chains in the symmetry direction, *via* pairs of O2– $H \cdots O1^{ii}$ interactions [symmetry code: (ii) x, y - 1, z]. Both OH groups of each molecule donate to 1,3-dioxane O atoms of the same translation-related adjacent molecule. The O···O distance in this interaction is 3.183 (2) Å and the angle about the H atom is 158 (3)°.

Experimental

Compound (I) was prepared by acetalization of D-mannitol with benzaldehyde (Baggett & Stribblehill, 1977). A crystal suitable for data collection was obtained by slow evaporation of an ethanol solution at room temperature.

Crystal data

C20H22O6 $M_r = 358.4$ Monoclinic, C2 a = 17.472 (4) Å $b = 4.9237 (10) \text{ \AA}$ c = 9.956(2) Å $\beta = 94.08(3)^{\circ}$ $V = 854.4 (3) \text{ Å}^3$ Z = 2

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\rm min}=0.668,\ T_{\rm max}=0.934$ 4158 measured reflections 1703 independent reflections 1669 reflections with $I > 2\sigma$ (I)

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0677P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.1745P]
$wR(F^2) = 0.093$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.933	$(\Delta/\sigma)_{\rm max} = 0.002$
1703 reflections	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3}$
123 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	(Sheldrick, 1997)
refinement	Extinction coefficient: 0.0112 (14)
	Absolute structure: Flack (1983)
	Electrometer = $0.10(17)$

Table 1

Selected geometric parameters (Å, °).

O1-C7	1.4179 (15)	O3-C7	1.4076 (14)
O1-C1	1.4328 (18)	O3-C3	1.4370 (15)
O2-C2	1.4273 (17)	C3-C3 ⁱ	1.512 (2)
C7-O1-C1	108.34 (10)	C7-O3-C3	111.17 (9)
C7-O1-C1-C2	58.34 (15)	C1-C2-C3-C3 ⁱ	165.69 (14)
O1-C1-C2-O2	-169.52(11)	$C2 - C3 - C3^{i} - C2^{i}$	177.60 (12)
O1-C1-C2-C3	-47.14 (16)	C3-O3-C7-O1	68.30 (12)
C7-O3-C3-C2	-55.36 (13)	C1-O1-C7-O3	-68.55(13)
C1-C2-C3-O3	44.54 (14)		

Symmetry code: (i) 1 - x, y, -z.

 $D_x = 1.391 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 11.4 - 44.7^{\circ}$ $\mu = 0.851 \ {\rm mm^{-1}}$ T = 293 KLath. colorless $0.53 \times 0.20 \times 0.08 \text{ mm}$

 $R_{\rm int} = 0.027$ $\theta_{\rm max} = 75^{\circ}$ $h = -21 \rightarrow 21$ $k = -6 \rightarrow 5$ $l = -12 \rightarrow 12$ 3 standard reflections frequency: 60 min intensity decay: 2.1% the Flack (1983) parameter, based on 713 Friedel pairs, and is in accord with the known absolute configuration. The hydroxyl-H atom was refined isotropically. Other H atoms were placed in calculated positions with C–H bond distances of 0.93 (phenyl) and 0.97 Å (sp^3), and $U_{iso} = 1.2U_{eq}$ of the attached C atom, and thereafter treated as riding. Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell

refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The absolute configuration of (I) was determined by refinement of

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by grant No. LEQSF(1996-97)-ESH-TR-10, administered by the Louisiana Board of Regents. This work was supported by a grant from the Department of Biological Sciences at Louisiana State University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1113). Services for accessing these data are described at the back of the journal.

References

- Baggett, N. & Stribblehill, P. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 1123-1129
- Berman, H. M., Jeffrey, G. A. & Rosenstein, R. D. (1968). Acta Cryst. B24, 442-449
- Bols, M. (1996). Carbohydrate Building Blocks, pp. 1-18. New York: John Wiley & Sons.
- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Defoin, A., Brouillard-Poichet, A. & Streith, J. (1991). Helv. Chim. Acta, 74, 103-109.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Greene, T. W. & Wuts, P. G. M. (1991). Protective Groups in Organic Synthesis, 2nd ed., pp. 128-132. New York: John Wiley & Sons.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

- Kanters, J. A., Roelofsen, G., & Smits, D. (1977). Acta Cryst. B33, 3635-3640.
- Kim, H. S., Jeffrey, G. A. & Rosenstein, R. D. (1968). Acta Cryst. B24, 1449-1455.
- Masaki, Y., Oda, H., Kazuta, K., Usui, A., Itoh, A. & Xu, F. (1992). Tetrahedron Lett. 33, 5089-5092.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Poitout, L., Le Merrer, Y. & Depezay, J.-C. (1994). Tetrahedron Lett. 35, 3293-3296.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Stein, Z., Green, D. & Goldberg, I. (1992). Acta Cryst. C48, 1141-1143.